CUBIC BI-IDEALS OF
 NEAR-SUBTRACTION SEMIGROUPS

P. Murugadas1, V. Vetrivel2, T. Maheshwari3
1,3Department of Mathematics, Govt. Arts and Science College, Karur-639 005, India.
2Department of Mathematics, Annamalai University, Annamalainagar- 608 002, India.

Abstract

In this article, the notion of cubic bi-ideals in near-subtraction near-ring has been introduced and some results are discussed.

AMS Subject Classification: 03E72, 20M20, 06E05,06F35
Keywords: Bi-ideals, near-subtraction semigroups, Cubic bi-ideal.

1. INTRODUCTION

The notion of subtraction algebra was introduced by Abbott [1] in 1969. Using this notion Schein [12] introduced the concept of subtraction semigroups in 1992. Zelinka [15] studied a special type of subtraction algebra called atomic subtraction algebra. The study of ideals in subtraction algebra was initiated by Jun et al.,[3] who also established some basic properties. Based on near-ring theory, Dheena [2] introduced the near-subtraction semigroups and strongly regular near-subtraction semigroups. K.J.Lee and C.H.Park [8] introduced the notion of a fuzzy ideal in subtraction algebras, and give some conditions for a fuzzy set to be a fuzzy ideal in subtraction algebras. The most appropriate theory for dealing with uncertainties is the theory of fuzzy sets developed by Zadeh [13]. Manikandan [9] studied fuzzy bi-ideals of near-ring and established some of their properties. The purpose of this paper to introduce the notion of cubic bi-ideals in near-subtraction semigroup. We investigate some basic results, examples and properties.

2. PRELIMINARIES

Definition 2.1.

Let S be a near subtraction semigroup, $(S, \bar{\mu})$ be an interval valued fuzzy near sub subtraction semigroup and (S, v) be a fuzzy near sub subtraction semigroup. A cubic set $A=\langle\bar{\mu}, v\rangle$ is called a cubic near subtraction subsemigroup of S , if it satisfies the following conditions:
(i) $\bar{\mu}(x-y) \geq \min \{\bar{\mu}(x), \bar{\mu}(y)\}$.
(ii) $v(x-y) \leq \max \{v(x), v(y)\}$
(iii) $\bar{\mu}(x y) \geq \min \{\bar{\mu}(x), \bar{\mu}(y)\}$.
(iv) $v(x y) \leq \max \{v(x), v(y)\}$ forallx, $y, \in S$

Example 2.2.

Let $S=\{0, a, b, 1\}$ in which "" and "." are defined as

-	0	a	b	1
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
1	1	b	a	0

.	0	a	b	1
0	0	0	0	0
a	0	a	0	0
b	0	0	b	b
1	0	0	b	b

Define an interval valued fuzzy set $\bar{\mu}: S \rightarrow D[0,1]$ by
$\bar{\mu}(0)=[0.9,1], \bar{\mu}(a)=[0.6,0.7], \bar{\mu}(b)=[0.8,0.9]$ and $\bar{\mu}(1)=[0,0.1]$ is an interval valued fuzzy near sub subtraction semigroup of S. Define a fuzzy set $v: S \rightarrow[0,1]$ by $v(0)=0, v(a)=0.6, v(b)=0.72$ and $v(1)=1$ is a fuzzy near subtraction subsemigroup of S .

Definition 2.3.

A cubic subalgebra $\bar{\mu}$ of X is called a cubic bi-ideal of X, if $(\bar{\mu} X \bar{\mu}) \cap\left(\bar{\mu} X^{*} \bar{\mu}\right) \subseteq \bar{\mu}$ and $(v X v) \cup\left(v X^{*} v\right) \supseteq v$.

Definition 2.4.

A cubic set $A=\langle\bar{\mu}, v\rangle$ of S is called a cubic left (right) ideal of S, if it satisfies the following conditions:
(i) $\bar{\mu}(x-y) \geq \min \{\bar{\mu}(x), \bar{\mu}(y)\}$
(ii) $v(x) \leq \max \{v(x-y), v(y)\}$
(iii) $\bar{\mu}(x y) \geq \min \{\bar{\mu}(x), \bar{\mu}(y)\}$
(iv) $v(x y) \leq \max \{v(x), v(y)\}$
(v) $\bar{\mu}(x y) \geq \bar{\mu}(x),[\bar{\mu}(x y) \geq \bar{\mu}(y)]$
(vi) $v(x y) \leq v(x),[v(x y) \leq v(y)]$
(vii) $\bar{\mu}(x z-x(y-z)) \geq \bar{\mu}(z)$
(viii) $v(x z-x(y-z)) \leq v(z) \forall x, y, z \in S$.

Definition 2.5.

Let $A_{1}=\left\langle\bar{\mu}_{1}, v_{1}\right\rangle$ and $A_{2}=\left\langle\bar{\mu}_{2}, v_{2}\right\rangle$ be any two cubic sets of S then from the following cubic sets of S are defined as follows:

$$
\left(A_{1}-A_{2}\right)(z)=\left\{\begin{array}{c}
\left(\bar{\mu}_{1}-\bar{\mu}_{2}\right)(z)=\left\{\begin{array}{c}
\sup _{z=x-y} \min \left\{\bar{\mu}_{1}(x), \bar{\mu}_{2}(x)\right\} \forall x, y \in \operatorname{Sifz}=x-y \\
, \text { otherwise }
\end{array}\right. \\
\left(v_{1}-v_{2}\right)(z)=\left\{\begin{array}{c}
\inf _{z=x-y} \max \left\{v_{1}(x), v_{2}(x)\right\} \forall x, y \in S \text { ifz }=x-y \\
1, \text { otherwise }
\end{array}\right. \\
\end{array}\right.
$$

$$
\left(A_{1} \circ A_{2}\right)(x)=\left\{\begin{array}{c}
\left.\bar{\mu}_{1} \circ \bar{\mu}_{2}\right)(x)=\left\{\begin{array}{c}
\sup _{x \leq a b} \min \left\{\bar{\mu}_{1}(a), \bar{\mu}_{2}(b)\right\} \text { if } x \leq a b \\
, \text { otherwise }
\end{array}\right. \\
\left(v_{1} \circ v_{2}\right)(x)=\left\{\begin{array}{c}
\inf _{z \leq a b} \max \left\{v_{1}(a), v_{2}(b)\right\} \text { if } x \leq a b \\
1, \text { otherwise }
\end{array}\right. \\
\end{array}\right.
$$

$$
\left\{\begin{array}{c}
\left.\bar{\mu}_{1} * \bar{\mu}_{2}\right)\left(x^{\prime}\right)=\left\{\begin{array}{c}
\sup \min \left\{\bar{\mu}_{1}(x), \bar{\mu}_{2}(z)\right\} \text { ifx } x \leq a b \\
, \text { otherwise }
\end{array}\right.
\end{array}\right.
$$

$$
\left(A_{1} * A_{2}\right)\left(x^{\prime}\right)=\left\{\left(v_{1}^{*} * v_{2}\right)\left(x^{\prime}\right)=\left\{\begin{array}{c}
\inf _{z \leq a b}^{\max \left\{v_{1}(x), v_{2}(b)\right\} \text { if } x \leq a b} \\
1, \text { otherwise }
\end{array}\right.\right.
$$

$$
\left(A_{1} \circ \quad A_{2}\right)(x)=\left\{\begin{array}{l}
\left(\bar{\mu}_{1} \cap \bar{\mu}_{2}\right)(x) \\
\left(v_{1} \cup v_{2}\right)(x)
\end{array}\right.
$$

Example 2.6.

Let $X=\{0, a, b, c\}$ in which -" and $\cdot "$ are defined by:

-	0	a	b	c
0	0	0	0	0
a	a	0	a	a
b	b	b	0	b
c	c	c	c	0

\cdot	0	a	b	c
0	0	0	0	0
a	a	a	a	a
b	0	0	0	b
c	0	0	0	c

Define $A=(\bar{\mu}, v)$ by $\bar{\mu}: S \rightarrow D[0,1]$ and $v: X \rightarrow[0,1]$ as
$\bar{\mu}(0)=[0.9,1], \bar{\mu}(a)=[0.7,0.8], \bar{\mu}(b)=[0.6,0.7]$ and $\bar{\mu}(c)=[0.4,0.5]$, and
$v(0)=0.1, v(a)=0.2, v(b)=0.3$ and $v(c)=0.5$ Then $\bar{\mu}$ is a fuzzy sub-subtraction semigroup of S. Hence $A=\langle\bar{\mu}, v\rangle$ is a cubic sub-near-semigroup of S.

Lemma 2.7.

Let $C=(\bar{\mu}, v)$ be a cubic subset of X. If C is a cubic left ideal of X, then C is a cubic bi-ideal of X.

Proof.

Let $x^{\prime} \in X$ be such that $x^{\prime} \leq a b c \leq(x z-x(y-z))$, where a, b, c, x, y and z are in X. Then

$$
\begin{aligned}
(\overline{(\mu X} \bar{\mu}) \cap(\bar{\mu} X * \bar{\mu}))\left(x^{\prime}\right)= & \min \left\{(\bar{\mu} X \bar{\mu})\left(x^{\prime}\right),(\bar{\mu} X * \bar{\mu})\left(x^{\prime}\right)\right\} \\
= & \min \left\{\left(\sup _{x^{\prime} \leq a b c} \min \{\bar{\mu}(a), X(b), \bar{\mu}(c)\}\right.\right. \\
& \left.\left.\sup _{x^{\prime} \leq x z-x(y-z)} \min \{(\bar{\mu} X)(x), \bar{\mu}(z)\}\right)\right\} \\
& =\min \{(\sup \{\bar{\mu}(a), \bar{\mu}(c)\}, \sup \{(\bar{\mu} X)(x), \bar{\mu}(z)\})\}
\end{aligned}
$$

Since $\bar{\mu} X \subseteq X$ and C is a cubic left ideal, then $\bar{\mu}(x z-x(y-z)) \geq \bar{\mu}(z)$.

$$
\begin{aligned}
& \leq \min \{X(a), X(b), X(x), \bar{\mu}(x z-x(y-z))\} \\
& =\min \left\{\{1,1,1, \bar{\mu}(x z-x(y-z))\}=\bar{\mu}\left(x^{\prime}\right) .\right.
\end{aligned}
$$

If x^{\prime} is not expressible as $x^{\prime} \leq a b c \leq x z-x(y-z)$ then $(\bar{\mu} X \bar{\mu} \cap \bar{\mu} X * \bar{\mu})\left(x^{\prime}\right)=0 \leq \bar{\mu}\left(x^{\prime}\right)$. Thus $\bar{\mu} X \bar{\mu} \cap \bar{\mu} X * \bar{\mu} \subseteq \bar{\mu}$.
$\left.(v X v) \cup\left(v X^{*} v\right)\right)\left(x^{\prime}\right)=\max \left\{(v X v)\left(x^{\prime}\right),\left(v X^{*} \mu\right)\left(x^{\prime}\right)\right\}$

$$
=\max \left\{\left(\inf _{x^{\prime} \leq a b c} \max \{v(a), X(b), v(c)\},\right.\right.
$$

$$
\left.\left.\inf _{x^{\prime} \leq x z-x(y-z)} \max \{(v X)(x), v(z)\}\right)\right\}
$$

$$
\geq \max \left\{\max \left(\inf \{v(a), v(c)\}, \inf _{x^{\leq} \leq x z-x(y-z)}\{v(x), v(z)\}\right)\right\}
$$

$$
\geq \max \left\{\max \left(\inf \{v(a b), v(c)\}, \inf _{x^{\leq} \leq x z-x(y-z)}\{v(x), v(x z-x(y-z)\})\right\}\right.
$$

$$
\geq \max \left\{\max \left(\inf \{v(a b c),\}, \inf _{x^{\prime} \leq x z-x(y-z)}\{v(x z-x(y-z)\})\right\}\right.
$$

$$
\geq v\left(x^{\prime}\right)
$$

If x^{\prime} is not expressible as $x^{\prime}=a b c=x z-x(y-z)$ then $\left(v X v \cup v X^{*} v\right)\left(x^{\prime}\right)=0 \geq v\left(x^{\prime}\right)$. Thus $v X v \cup v X^{*} v \supseteq v$. Hence v is a cubic bi-ideal of X.

Theorem 2.8.

Let A be a cubic subset of X. Then $A=\langle\bar{\mu}, v\rangle$ is a cubic bi-ideal of X if and only if the level subset $U(A: \bar{t}, n)$ is a cubic bi-ideal of X for all $\bar{t} \in D[0,1]$ and $n \in[0,1]$.

Proof.

Assume that $A=\langle\bar{\mu}, v\rangle$ is a cubic bi-ideal of X. Let $x, y \in U[A: \bar{t}, n]$ for all $\bar{t} \in D[0,1]$ and $n \in[0,1]$. Then $\bar{\mu}(x), \bar{\mu}(y) \geq \bar{t}$ and $v(x), v(y) \leq n$, since A is a cubic bi-ideal of X, we have $\bar{\mu}(x-y) \geq \min \{\bar{\mu}(x), \bar{\mu}(y)\} \geq \bar{t}$ and

$$
v(x-y) \leq \min \{v(x), v(y)\} \leq n .
$$

It follows that $x-y \in U[A: \bar{t}, n]$. Let $\quad x^{\prime} \in X \quad, \quad x^{\prime} \in \bar{\mu}_{t} X \bar{\mu}_{t} \cap \bar{\mu}_{t} X * \bar{\mu}_{t} \quad$ and $x^{\prime} \in v_{n} X v_{n} \cup v_{n} X * v_{n}$
If there exist $a_{1}, b, x_{1}, z \in U[A: \bar{t}, n]$ and $a_{2}, a, x, x_{2}, y \in X \quad$ such that $x^{\prime} \leq a b \leq x z-x(y-z), a \leq a_{1} a_{2}$ and $x \leq x_{1} x_{2}$. Then $\bar{\mu}\left(a_{1}\right) \geq \bar{t}, \bar{\mu}(b) \geq \bar{t}, \bar{\mu}(z) \geq \bar{t}$ and $\bar{\mu}\left(x_{1}\right) \geq t$ and $v\left(a_{1}\right) \leq n, v(b) \leq n, v(z) \leq n, v\left(x_{1}\right) \leq n$. Thus

$$
\left.\bar{\mu}\left(x^{\prime}\right) \geq\{\bar{\mu} X \bar{\mu} \cap \bar{\mu} X * \bar{\mu})\left(x^{\prime}\right)\right\}
$$

$$
\begin{aligned}
= & \min \left\{(\bar{\mu} X \bar{\mu})\left(x^{\prime}\right),(\bar{\mu} X * \bar{\mu})\left(x^{\prime}\right)\right\} \\
= & \min \left\{\left(\sup _{x^{\prime} \leq a b} \min \{(\bar{\mu} X)(a), \bar{\mu}(b)\}, \sup _{x^{\prime} \leq x z-x(y-z)} \min \{(\bar{\mu} X)(x), \bar{\mu}(z)\}\right)\right\} \\
= & \min \left\{\operatorname { s u p } _ { x ^ { \prime } \leq a b } \operatorname { m i n } \left\{\sup _{a \leq a_{1} a_{2}} \min \left\{\bar{\mu}\left(a_{1}\right), X\left(a_{2}\right)\right\}, \bar{\mu}(b\},\right.\right. \\
& \left.\sup _{x^{\prime} \leq x z-x(y-z)} \min \left\{\sup _{x \leq x_{1} x_{2}} \min \left\{\bar{\mu}\left(x_{1}\right), X\left(x_{2}\right)\right\}, \bar{\mu}(z)\right\}\right\} \\
= & \min \left\{\bar{\mu}\left(a_{1}\right), \bar{\mu}(b), \bar{\mu}\left(x_{1}\right), \bar{\mu}(z)\right\} \geq \bar{t} .
\end{aligned}
$$

$$
\left.v\left(x^{\prime}\right) \leq\left\{v X v \cup v X^{*} v\right)\left(x^{\prime}\right)\right\}
$$

$$
\begin{equation*}
\left.=\leq \max \left\{v X v, v X^{*} v\right)\left(x^{\prime}\right)\right\} \tag{1}
\end{equation*}
$$

Now

$$
\begin{aligned}
\left.(v X v)\left(x^{\prime}\right)=\inf _{x^{\prime} \leq a b} \max \left\{\inf _{a \leq a_{1} a_{2}} \max \left\{v\left(a_{1}\right), X\left(a_{2}\right)\right\}, v(b)\right\}\right\} & \\
& \left.=\inf _{x^{\prime} \leq a b} \max \left\{v\left(a_{1}\right), v(b)\right\}\right\} \\
& \leq n \ldots . .(2)
\end{aligned}
$$

Again

$$
\begin{align*}
\left(v X^{*} v\right)\left(x^{\prime}\right) \quad & =\inf _{x^{\prime} \leq x z-x(y-z)} \max \{v X(x), v(z)\} \\
& =\inf _{x^{\prime} \leq x z-x(y-z)} \max \left\{\inf _{x \leq x_{1} x_{2}} \max \left\{v\left(x_{1}\right), X\left(x_{2}\right)\right\}, v(z)\right\} \\
& =\inf _{x^{\prime} \leq x z-x(y-z)} \max \left\{v\left(x_{1}\right), X\left(x_{2}\right)\right\} \\
\left(\operatorname{since} X\left(x_{2}\right)=0\right) & \\
& \left.\leq n\left(\mathrm{i} \text { fsincev }\left(x_{1}\right) \leq n, v(z) \leq n\right)\right) \ldots . . .(3) \tag{3}
\end{align*}
$$

Using (2) and (3) in (1), we get $v\left(x^{\prime}\right) \leq n$.
This implies that $\bar{\mu}\left(x^{\prime}\right) \geq \bar{t}$ and $v\left(x^{\prime}\right) \leq n$ so $x^{\prime} \in U[A: \bar{t}, n]$, that is, $\bar{\mu}_{t} X \bar{\mu}_{t} \cap \bar{\mu}_{t} X * \bar{\mu}_{t} \subseteq \bar{\mu}_{t}$ and $v_{n} X v_{n} \cup v_{n} X * v_{n} \supseteq v_{n}$.

Hence $A=\langle\bar{\mu}, v\rangle$ is a bi-ideal of X.
Conversely, assume that $U[A: \bar{t}, n]$ is a cubic bi-ideal of X for $t, n \in[0,1]$. Let $x^{\prime} \in X$. Suppose that $\min \left\{\left(\bar{\mu} X \bar{\mu} \cap \bar{\mu} X^{*} \bar{\mu}\right)\left(x^{\prime}\right)\right\}>\bar{\mu}\left(x^{\prime}\right)$. Choose $0<t \leq 1 \quad$ such that $\left\{\left(\bar{\mu} X \bar{\mu} \cap \bar{\mu} X^{*} \bar{\mu}\right)\left(x^{\prime}\right)\right\}>\bar{t}>\bar{\mu}\left(x^{\prime}\right)$.
This implies that $(\bar{\mu} X \bar{\mu})\left(x^{\prime}\right) \geq \bar{t}$ and $\left(\bar{\mu} X^{*} \bar{\mu}\right)\left(x^{\prime}\right) \geq \bar{t}$. Then

$$
\begin{aligned}
(\bar{\mu} X \bar{\mu})\left(x^{\prime}\right)= & \sup _{x^{\prime} \leq a b} \min \left\{\sup _{a \leq a_{1} a_{2}} \min \left\{\bar{\mu}\left(a_{1}\right), X\left(a_{2}\right)\right\}, \bar{\mu}(b)\right\} \\
(\bar{\mu} X * \bar{\mu})\left(x^{\prime}\right) & =\sup _{x^{\prime} \leq(x z-x(y-z))} \min \{(\bar{\mu} X)(x), \bar{\mu}(z)\} \\
& \left.\left.=\sup _{x^{\prime}=x z-x(y-z)} \min \left\{\sup _{x=x_{1} X_{2}} \min \left\{a_{1}\right), \bar{\mu}(b)\right\} \geq \bar{t}\left(x_{1}\right), X\left(x_{2}\right)\right\}, \bar{\mu}(z)\right\} \\
& =\min \left\{\bar{\mu}\left(x_{1}\right), \bar{\mu}(z)\right\} \geq \bar{t}
\end{aligned}
$$

Thus $a_{1}, b, x, z \in \bar{\mu}_{t}$. Suppose that $\min \left\{\left(v X v \cup v X^{*} v\right)\left(x^{\prime}\right)\right\}<v\left(x^{\prime}\right)$. Choose $0>n \geq 1$ such that $\left\{\left(v X v \cup v X^{*} v\right)\left(x^{\prime}\right)\right\}<n<v\left(x^{\prime}\right)$.
This implies that $(v X v)\left(x^{\prime}\right) \leq n$ or $\left(v X^{*} v\right)\left(x^{\prime}\right) \leq n$. Then

$$
\begin{aligned}
& \left.(v X v)\left(x^{\prime}\right)=\inf _{x^{\prime} \leq a b}^{\max \left\{\inf _{a \leq a_{1}} a_{2}\right.} \max \left\{v\left(a_{1}\right), X\left(a_{2}\right)\right\}, v(b)\right\} \quad=\max \left\{v\left(a_{1}\right), v(b)\right\} \leq n . \\
& (v X * v)\left(x^{\prime}\right) \\
& =\inf _{x^{\prime} \leq(x z-x(y-z))} \max \{(v X)(x), v(z)\} \\
& \\
& =\inf _{x^{\prime}=x z-x(y-z)} \max \left\{\inf _{x=x_{1} x_{2}} \max \left\{v\left(x_{1}\right), X\left(x_{2}\right)\right\}, v(z)\right\} \\
& \\
& =\max \left\{v\left(x_{1}\right), v(z)\right\} \leq n .
\end{aligned}
$$

Implies $a_{1}, b, x, z \in v_{n}$.
Thus $a_{1}, b, x_{1}, z \in U[A: \bar{t}, n]$. Since $U[A: \bar{t}, n]$ is a bi-ideal of X, we have $x^{\prime}=a_{1} a_{2} b \in U[A: \bar{t}, n]$ and $x^{\prime}=x_{1} x_{2} z-x_{1} x_{2}(y-z) \in U[A: \bar{t}, n]$.
So, $x^{\prime} \in\left(\bar{\mu}_{t} X \bar{\mu}_{t}\right) \cap\left(\bar{\mu}_{t} X * \bar{\mu}_{t}\right)$, implying, $x^{\prime} \in U[A: \bar{t}, n]$, since $U[A: \bar{t}, n]$ is a bi-ideal of X. Thus $\bar{\mu}\left(x^{\prime}\right) \geq \bar{t}$ and $v\left(x^{\prime}\right) \leq n$ which is a contradiction. Therefore $\bar{\mu} X \bar{\mu} \cap \bar{\mu} X * \bar{\mu} \subseteq \bar{\mu}$ and $v X v \cup v X^{*} v \supseteq v$
Hence $A=\langle\bar{\mu}, v\rangle$ is a cubic bi-ideal of X.

Lemma 2.9.

Let A and B be two nonempty subsets of X. Then the following are true:

- $f_{A} \cap f_{B}=f_{A \cap B}$.
- $f_{A} \cup f_{B}=f_{A \cup B}$.
- $f_{A} f_{B}=f_{A B}$.
- $f_{A} * f_{B}=f_{A^{*} B}$.

Lemma 2.10.

A nonempty subset A of X is a bi-ideal of X if and only if $f_{A}=\left(\bar{\mu}_{A}, v_{A}\right)$ is a cubic bi-ideal of X.
Proof.
Assume that A is a bi-ideal of X. Let f_{A} be a cubic subset of X defined by

$$
\bar{\mu}_{A}(x)=\{\overline{1}
$$

x A $\overline{0}$ otherwise.

$$
v_{A}(x)=\{0
$$

x A lotherwise. Let $x, y \in X$. Suppose that $\bar{\mu}_{A}(x-y)<\min \left\{\bar{\mu}_{A}(x), \bar{\mu}_{A}(y)\right\}$ and $v(x-y)>\max \left\{v_{A}(x), v_{A}(y)\right\}$. Then, $\bar{\mu}_{A}(x-y)=\overline{0}$ and $\min \left\{\bar{\mu}_{A}(x), \bar{\mu}_{A}(y)\right\}=1 . \quad v_{A}(x-y)=1$ and $\max \left\{v_{A}(x), v_{A}(y)\right\}=0$. This point out that $x, y \in f_{A}$ and $x-y \notin f_{A}$, which is a contradiction to our conjecture. Thus so, f_{A} is a cubic subalgebra of X. For some $x \in X$, take $\overline{\mu_{A}}(x)<\min \left\{\left\{\left(\overline{\mu_{A}} X \overline{\mu_{A}}\right)(x),\left(\overline{\mu_{A}} X * \overline{\mu_{A}}\right)(x)\right\}\right.$. and $v_{A}(x)>\max \left\{\left\{\left(v_{A} X v_{A}\right)(x),\left(v_{A} X * v_{A}\right)\right\}(x)\right\}$.
Then $\overline{\mu_{A}}(x)=\overline{0} \quad$ and $\min \left\{\left(\{X\} \overline{\mu_{A}}\right)(x),\left(\overline{\mu_{A}} X * \overline{\mu_{A}}\right)(x)\right\}=\overline{1}$, that is, $\quad\left(\overline{\mu_{A}} X \overline{\mu_{A}}\right)(x)=\overline{1}$ and $v_{A}(x)=1$ and $\max \left\{\left(\{X\} \nu_{A}\right)(x),\left(v_{A} X * v_{A}\right)(x)\right\}=0$, that is, $(v X v)(x)=0$ and $(\bar{\mu} X * \bar{\mu})(x)=1$, $\left(v X^{*} v\right)(x)=0$. This means that $\bar{\mu}_{A X A}(x)=1$ and $\bar{\mu}_{A X^{*} A}(x)=1$,
$v_{A X A}(x)=0$ and $v_{A X * A}(x)=0$. Hence by Lemma Error! Reference source not found. $\left\{\left(\bar{\mu}_{A X A} \cap \bar{\mu}_{A X *_{A} A}\right)(x)\right\}=\left\{\bar{\mu}_{A X A \cap A X *_{A}}(x)\right\}=1 . \quad\left\{\left(v_{A X A} \cup v_{A X *_{A}}\right)(x)\right\}=\left\{v_{A X A \cup A X X_{A}}(x)\right\}=0$. Thus $x \in A X A \cup A X^{*} A$. This implies that $x \in A$, which is a contradiction. Thus, $\overline{\mu_{A}}(x) \geq \min \left\{\left\{\left(\overline{\mu_{A}} X \overline{\mu_{A}},\right)(x)\right\},\left(\overline{\mu_{A}} X * \overline{\mu_{A}}\right)\right\}(x)$ and $v_{A}(x) \leq \max \left\{\left\{\left(v_{A} X v_{A},\right)(x)\right\},\left(v_{A} X * v_{A}\right)\right\}(x)$. So, $f_{A}=\left\langle\overline{\mu_{A}}, v_{A}\right\rangle$ is a cubic bi-ideal of X.

Conversely, assume that f_{A} is a cubic bi-ideal of X. Let $x^{\prime} \in A X A \cap A X * A$. Then $x^{\prime} \in A X A \quad$ and $\quad x^{\prime} \in A X^{*} A$. Let $a_{1}, b, z, x_{1} \in A \quad$ and $\quad a_{2}, x, y, x_{2}, z \in X \quad$ be such that $x^{\prime} \leq a_{1} a_{2} b \leq(x z-x(y-z), x) \leq x_{1} x_{2}$. Now,

$$
\begin{aligned}
\overline{\mu_{A}}\left(x^{\prime}\right) & \geq\left\{\left(\overline{\mu_{A}} X \overline{\mu_{A}} \cap \overline{\mu_{A}} X * \overline{\mu_{A}}\right)\left(x^{\prime}\right)\right\} \\
= & \min \left[\left\{\left(\overline{\mu_{A}} X \overline{\mu_{A}}\right)\left(x^{\prime}\right)\right\},\left\{\left(\overline{\mu_{A}} X * \overline{\mu_{A}}\right)\left(x^{\prime}\right)\right\}\right] \\
= & \min \left\{\left(\sup _{x^{\prime} \leq a b} \min \left\{\left(\overline{\mu_{A}} X\right)(a), \overline{\mu_{A}}(b)\right\}, \sup _{x^{\prime} \leq x z-x(y-z)} \min \left\{\left(\overline{\mu_{A}} X\right)(x), \overline{\mu_{A}}(z)\right\}\right)\right\} \\
= & \min \left\{\left(\sup _{x^{\prime} \leq a b} \min \left\{\sup _{a \leq a_{1} a_{2}} \min \left\{\overline{\mu_{A}}\left(a_{1}\right), X\left(a_{2}\right)\right\}, \overline{\mu_{A}}(b)\right\},\right.\right. \\
& \left.\left.\sup _{x^{\prime} \leq x z-x(y-z)} \min \left\{\sup \min \left\{\overline{\mu_{A}}\left(x_{1}\right), X\left(x_{2}\right),\right\}, \overline{\mu_{A}}(z)\right\}\right)\right\} \\
= & \min \left\{\left\{\overline{\mu_{A}}\left(a_{1}\right), \overline{\mu_{A}}(b), \overline{\mu_{A}}\left(x_{1}\right), f_{B}(z)\right\}\right\}=1 . \\
v_{A}\left(x^{\prime}\right) \leq & \left\{\left(v_{A} X v_{A} \cup v_{A} X * v_{A}\right)\left(x^{\prime}\right)\right\} \\
= & \max \left[\left\{\left(v_{A} X v_{A}\right)\left(x^{\prime}\right)\right\},\left\{\left(v_{A} X * v_{A}\right)\left(x^{\prime}\right)\right\}\right] \\
= & \max \left\{\left(\inf _{x^{\prime} \leq a b} \max \left\{\left(v_{A} X\right)(a), v_{A}(b)\right\}, \inf _{x^{\prime} \leq x z-x(y-z)} \max \left\{\left(v_{A} X\right)(x), v_{A}(z)\right\}\right)\right\} \\
= & \min \{0,0\}=0 .
\end{aligned}
$$

This implies that $\nu_{A}\left(x^{\prime}\right)=0$ and so $x^{\prime} \in A$, that is, $A X A \cap A X * A \subseteq A$ and hence A is a bi-ideal of X.

Theorem 2.11.
Let $A=(\bar{\mu}, v)$ be a cubic subalgebra of X. If $A X A \subseteq A$ then A is a cubic bi-ideal of X.

Proof:

Assume that A is a Cubic subalgebra of X and $\bar{\mu} X \bar{\mu} \subseteq \bar{\mu}$, Let $x \in X$. Then
$(\bar{\mu} X \bar{\mu} \cap \bar{\mu} X * \bar{\mu})(x)=\min \{(\bar{\mu} X \bar{\mu})(x),(\bar{\mu} X * \bar{\mu})(x)\} \leq(\bar{\mu} X \bar{\mu})(x) \leq \bar{\mu}(x)$.
Thus $(\bar{\mu} X \bar{\mu} \cap \bar{\mu} X * \bar{\mu})(x) \subseteq \bar{\mu}$
and
$\left(v X v \cap v X^{*} v\right)(x)=\max \left\{(v X v)(x),\left(v X^{*} v\right)(x)\right\} \geq(v X v)(x) \geq v(x)$.
Thus $\left(v X v \cap v X^{*} v\right)(x) \supseteq v$.
Hence $A=(\bar{\mu}, v)$ is a cubic bi-ideal of X.

Theorem 2.12.

If X is a zero-symmetric near-subtraction semi-group and $A=(\bar{\mu}, v)$ be a cubic bi-ideal of X then $\bar{\mu} X \bar{\mu} \subseteq \bar{\mu}$ and $v X v \supseteq v$
Proof:
Let $A=(\bar{\mu}, v)$ be a cubic bi-ideal of X.
Then $\bar{\mu} X \bar{\mu} \cap \bar{\mu} X * \bar{\mu} \subseteq \bar{\mu}$. Clearly $\bar{\mu}(0) \geq \bar{\mu}(x)$.
Thus $\bar{X}(0) \geq(\bar{X})(x)$ for all $x \in X$. Since X is a zero-symmetric near-subtraction semigroup, $\bar{\mu} X \bar{\mu} \subseteq \bar{\mu} X^{*} \bar{\mu}$. So $\bar{\mu} X \bar{\mu} \cap \bar{\mu} X * \bar{\mu}=\bar{\mu} X \bar{\mu} \subseteq \bar{\mu}$, and
$v X v \cap v X^{*} v \subseteq v$. Clearly $v(0) \leq v(x)$.
Thus $v X(0) \leq(v X)(x)$ for all $x \in X$. Since X is a zero-symmetric near-subtraction semigroup,
$v X v \subseteq v X^{*} v$. So $v X v \cap v X^{*} v=v X v \supseteq v$, which is the required results.

Theorem 2.13.

Let X be a zero-symmetric near-subtraction semigroup and $A=(\bar{\mu}, v)$ be a cubic subalgebra of X. Then the following conditions are equivalent:
(1) A is a cubic bi-ideal of X.
(2) $A X A \subseteq A$.

Proof:

The proof is straightforward from Theorem 2.12. and Theorem 2.13.

Theorem 2.14.

Let $A=(\bar{\mu}, v)$ be a cubic bi-ideal of a zero-symmetric near-subtraction semigroup X. Then $\bar{\mu}(x y z) \geq \min \{\bar{\mu}(x), \bar{\mu}(z)\}$. and $v(x y z) \leq \max \{v(x), v(z)\}$.
Proof.
Assume that A is a cubic bi-ideal of zero-symmetric near-subtraction semigroup X. By Theorem (2.13), $\min \{(\bar{\mu} X \bar{\mu})(x)\} \leq \bar{\mu}(x)$ and $\max \{(v X v)(x)\} \geq v(x) \forall x \in X$. Let $x, y, z \in X$. Then

$$
\begin{aligned}
\bar{\mu}(x y z) & \geq \min \{(\bar{\mu} X \bar{\mu}(x y z)\} \\
& =\min \left\{\left\{\sup _{x y z a b}(\bar{\mu} X)(a), \bar{\mu}(b)\right\}\right\} \\
& \geq \min \{(\bar{\mu} X)(x y), \bar{\mu}(b)\} \\
& \geq \min \{\bar{\mu} X(x y), \bar{\mu}(b)\} \\
& \geq \min \{\bar{\mu}(x) X(y), \bar{\mu}(b)\} \\
& =\min \{\bar{\mu}(x), \bar{\mu}(z)\}
\end{aligned}
$$

Therefore $\bar{\mu}(x y z) \geq \min \{\bar{\mu}(x), \bar{\mu}(z)\}$.

$$
\begin{aligned}
v(x y z) & \leq \max \{(v X v)(x y z)\} \\
& =\max \left\{\left\{\inf _{x y z a b}^{\max }(v X)(a), v(b)\right\}\right\} \\
& \leq \max \{(v X)(x y), v(b)\} \\
& \leq \max \{v X(x y), v(b)\} \\
& \leq \max \{v(x) X(y), v(b)\} \\
& =\max \{v(x), v(z)\}
\end{aligned}
$$

Therefore $v(x y z) \leq \max \{v(x), v(z)\}$.

Theorem 2.15.

Let $A=\langle\bar{\mu}, v\rangle$ be a cubic bi-ideal of a zero-symmetric near-subtraction semigroup X. Then the following are equivalent.
(1) $\bar{\mu}(x y z) \geq \min \{\bar{\mu}(x), \bar{\mu}(z)\}$, and $v(x y z) \leq \max \{v(x), v(z)\}$,
(2) $\{(\bar{\mu} X \bar{\mu})(x)\} \subseteq \bar{\mu}(x)$ and $\{(v X v)(x)\} \supseteq v(x) \forall x \in X$.

Proof.
Let $A=\langle\bar{\mu}, v\rangle$ be a cubic bi-ideal of zero-symmetric near-subtraction semigroup X. Let $x^{\prime} \in X$.
$(1) \Rightarrow(2)$: If there exist $x, y, x_{1}, x_{2} \in X$ such that $x^{\prime}=x y$ and $x=x_{1} x_{2}$. Then by hypothesis, $\bar{\mu}\left(x_{1} x_{2} y\right) \geq \min \left\{\bar{\mu}\left(x_{1}\right), \bar{\mu}(y)\right\}$ and $v\left(x_{1} x_{2} y\right) \leq \max \left\{v\left(x_{1}\right), v(y)\right\}$. We have

$$
\begin{aligned}
\left\{(\bar{\mu} X \bar{\mu})\left(x^{\prime}\right)\right\} & =\left\{\sup _{x^{\prime} \leq x y} \min \{(\bar{\mu} X)(x), \bar{\mu}(y)\}\right\} \\
& =\left\{\sup _{x^{\prime} \leq x y}\left\{\sup _{x \leq x_{1} x_{2}} \min \left\{\bar{\mu}\left(x_{1}\right), X\left(x_{2}\right)\right\}, \bar{\mu}(y)\right\}\right\} \\
& =\left\{\sup _{x^{\prime} \leq x y} \min \left\{\sup _{x \leq x_{1} x_{2}} \min \left\{\bar{\mu}\left(x_{1}\right), 1\right\}, \bar{\mu}(y)\right\}\right\} \\
& =\sup _{x^{\prime} \leq x_{1} x_{2} y} \min \left\{\bar{\mu}\left(x_{1}\right), \bar{\mu}(y)\right\} \\
& \leq \sup _{x^{\prime} \leq x_{1} x_{2} y} \bar{\mu}\left(x_{1} x_{2} y\right)=\bar{\mu}\left(x_{1} x_{2} y\right)=\bar{\mu}\left(x^{\prime}\right) .
\end{aligned}
$$

So, $\min \left\{\left(\bar{\mu}^{*} \bar{\mu}\right)(x)\right\} \leq \bar{\mu}(x)$. Also

$$
\begin{array}{rl}
\left\{(v X v)\left(x^{\prime}\right)\right\} & =\left\{\inf _{x^{\prime} \leq x y} \max \{(v X)(x), v(y)\}\right\} \\
& =\left\{\inf _{x^{\prime} \leq x y} \max \left\{\inf _{x x_{1} x_{2}} \max \left\{v\left(x_{1}\right), X\left(x_{2}\right)\right\}, v(y)\right\}\right\} \\
& =\left\{\inf _{x^{\prime} \leq x y} \max \left\{\inf _{x \leq x_{1} x_{2}} \max \left\{v\left(x_{1}\right), 0\right\}, v(y)\right\}\right\} \\
& \geq \inf _{x^{\prime} \leq x_{1} x_{2}} y \\
& \left.\geq v\left(x_{1}\right), v(y)\right\} \\
& \inf _{x^{\prime}=x_{1} x_{2}} y \\
v & v\left(x_{1} x_{2} y\right)=v\left(x_{1} x_{2} y\right)=v\left(x^{\prime}\right) .
\end{array}
$$

So, $\min \left\{(\bar{\mu} X(\bar{\mu})(x)\} \leq \bar{\mu}(x)\right.$. and $\max \left\{\left(v^{*}(v)(x)\right\} \geq v(x)\right.$. Thus (2) holds.
(2) $\Rightarrow(1)$: Assume that $\{(\bar{\mu} X \bar{\mu})(x)\} \leq \bar{\mu}(x)$ and $(v X v)(x) \geq v(x)$. Let $x, y, z, x^{\prime} \in X$ be such that $x^{\prime} \leq x y z$. Then

$$
\begin{aligned}
\bar{\mu}(x y z)\left(x^{\prime}\right) \geq\{(\bar{\mu} X \bar{\mu})(x y z)\} & \\
& =\min \left\{\sup _{x^{\prime} \leq x y z}\{(\bar{\mu} X)(x y), \bar{\mu}(z)\}\right\} \\
& \geq \min \{\bar{\mu}(x), X(y), \bar{\mu}(z)\} \\
& =\min \{\bar{\mu}(x), 1, \bar{\mu}(z)\}=\min \{\bar{\mu}(x), \bar{\mu}(z)\} .
\end{aligned}
$$

and aslo, Assume that $\max \{(v X v)(x)\} \geq v(x)$. Let $x, y, z, x^{\prime} \in X$ be such that $x^{\prime}=x y z$. Then

$$
\begin{aligned}
v(x y z) \leq\{(v X v)(x y z)\} & \\
& =\left\{\inf _{x^{\prime} \leq x y z}^{\max }\{(v X)(x y), v(z)\}\right\} \\
& \leq \max \{v(x), X(y), v(z)\} \\
& =\max \{v(x), 0, v(z)\}=\max \{v(x), v(z)\} .
\end{aligned}
$$

Therefore (1) holds.
Theorem 2.16.
Let $A=\left(\bar{\mu}_{A}, v_{A}\right)$ and $B=\bar{\mu}_{B}, v_{B}$ be any two cubic bi-ideals of X . Then $B \cap A$ is also a cubic bi-ideal of X.

Proof.

Let A and B be any two cubic bi-ideals of X . Let $x, y \in X$.

$$
\begin{aligned}
\left(\bar{\mu}_{A} \cap \bar{\mu}_{B}\right)(x-y) & =\min \left\{\bar{\mu}_{A}(x-y), \bar{\mu}_{B}(x-y)\right\} \\
& \geq \min \left\{\left(\min \left\{\bar{\mu}_{A}(x), \bar{\mu}_{A}(y)\right\}, \min \left\{\bar{\mu}_{B}(x), \bar{\mu}_{B}(y)\right\}\right)\right\} \\
& =\min \left\{\left(\min \left\{\bar{\mu}_{A}(x), \bar{\mu}_{B}(x)\right\}, \min \left\{\bar{\mu}_{A}(y), \bar{\mu}_{B}(y)\right\}\right)\right\} \\
& =\min \left\{\left(\left(\bar{\mu}_{A} \cap \bar{\mu}_{B}\right)(x),\left(\bar{\mu}_{A} \cap \bar{\mu}_{B}\right)(y)\right)\right\} . \\
\left(v_{A} \cup v_{B}\right)(x-y) & =\max \left\{v_{A}(x-y), v_{B}(x-y)\right\} \\
& \leq \max \left\{\left(\max \left\{v_{A}(x), v_{A}(y)\right\}, \max \left\{v_{B}(x), v_{B}(y)\right\}\right)\right\} \\
& =\max \left\{\left(\max \left\{v_{A}(x), v_{B}(x)\right\}, \max \left\{v_{A}(y), v_{B}(y)\right\}\right)\right\} \\
& =\max \left\{\left(\left(\bar{v}_{A} \cup \bar{v}_{B}\right)(x),\left(\bar{v}_{A} \cup \bar{v}_{B}\right)(y)\right)\right\} .
\end{aligned}
$$

Let $x^{\prime} \in X$. Choose $a, b, x, y, z \in X$ such that $x^{\prime} \leq a b c \leq x z-x(y-z)$. Since A and B are cubic bi-ideals of X, we have

$$
\begin{align*}
& \min \left\{\left\{\sup _{x^{\prime} \leq a b c} \min \left\{\bar{\mu}_{A}(a), \bar{\mu}_{A}(c)\right\}, \sup _{x^{\prime} \leq x z-x(y-z)} \bar{\mu}_{A}(z)\right\}\right\} \leq \bar{\mu}_{A}(x) \tag{1}\\
& \min \left\{\left\{\sup _{x^{\prime} \leq a b c} \min \left\{\bar{\mu}_{B}(a), \bar{\mu}_{B}(c)\right\}, \sup _{x^{\prime} \leq x z-x(y-z)} \bar{\mu}_{B}(z)\right\}\right\} \leq \bar{\mu}_{B}(x) \tag{2}\\
& \max \left\{\inf _{x \leq a b c} \max \left\{v_{A}(a), v_{A}(b), \sup _{x^{\prime} \leq x z-x(y-z)} v_{A}(z)\right\}\right\} \geq v_{A}(x) \\
& \max \left\{\inf _{x \leq a b c} \max \left\{v_{B}(a), v_{B}(b), \sup _{x^{\prime} \leq x z-x(y-z)} v_{B}(z)\right\}\right\} \geq v_{B}(x) \tag{4}
\end{align*}
$$

Now

$$
\begin{aligned}
& \min \left\{\left\{\left(\left(\bar{\mu}_{A} \cap \bar{\mu}_{B}\right) X\left(\bar{\mu}_{A} \cap \bar{\mu}_{B}\right)\right)\left(x^{\prime}\right),\left(\left(\bar{\mu}_{A} \cap \bar{\mu}_{B}\right) X *\left(\bar{\mu}_{A} \cap \bar{\mu}_{B}\right)\right)\left(x^{\prime}\right)\right\}\right\} \\
& =\min \left\{\left\{\sup \min \left\{\left(\bar{\mu}_{A} \cap \bar{\mu}_{B}\right)(a),\left(\bar{\mu}_{A} \cap \bar{\mu}_{B}\right)(c)\right\},\right.\right. \\
& \left.\left.\sup _{x^{\prime} \leq x z-x(y-z)}\left(\bar{\mu}_{A} \cap \bar{\mu}_{B}\right)(z)\right\}\right\} \\
& =\min \left\{\sup _{x^{\prime} \leq a b c} \min \left\{\min \left\{\bar{\mu}_{A}(a), \bar{\mu}_{B}(a)\right\}, \min \left\{\bar{\mu}_{A}(c), \bar{\mu}_{B}(c)\right\}\right\},\right. \\
& \left.\sup _{x^{\prime} \leq x z-x(y-z)} \min \left\{\bar{\mu}_{A}(z), \bar{\mu}_{B}(z)\right\}\right\} \\
& =\min \left\{\min \left\{\sup _{x^{\prime} \leq a b c} \min \left\{\bar{\mu}_{A}(a), \bar{\mu}_{B}(c)\right\}, \sup _{x^{\prime} \leq x z-x(y-z)}\left\{\bar{\mu}_{A}(z)\right\}\right\},\right. \\
& \left.\min \left\{\sup _{x^{\prime} \leq a b c} \min \left\{\bar{\mu}_{B}(a), \bar{\mu}_{B}(c)\right\}, \sup _{x^{\prime} \leq x z-x(y-z)} \mu_{B}(z)\right\}\right\} \\
& \leq \min \left\{\bar{\mu}_{A}(x), \bar{\mu}_{B}(x)\right\}, \text { from(1) } \operatorname{and}(2)=\left(\bar{\mu}_{A} \cap \bar{\mu}_{B}\right)(x) . \\
& \max \left\{\left\{\left(\left(v_{A} \cup v_{B}\right) X\left(v_{A} \cup v_{B}\right)\right)\left(x^{\prime}\right),\left(\left(v_{A} \cup v_{B}\right) X *\left(v_{A} \cup v_{B}\right)\right)\left(x^{\prime}\right)\right\}\right\} \\
& =\max \left\{\left\{\inf _{x^{\prime} \leq a b c} \max \left\{\left(v_{A} \cup v_{B}\right)(a),\left(v_{A} \cup v_{B}\right)(c)\right\}\right.\right. \text {, } \\
& \left.\left.\inf _{x^{\prime} \leq x z-x(y-z)}\left(v_{A} \cup v_{B}\right)(z)\right\}\right\} \\
& =\min \left\{\inf _{x^{\prime} \leq a b c} \max \left\{\max \left\{v_{A}(a), v_{A}(a)\right\}, \max \left\{v_{B}(c), v_{B}(c)\right\}\right\},\right. \\
& \left.\inf _{x^{\prime} \leq x z-x(y-z)} \max \left\{v_{A}(z), v_{B}(z)\right\}\right\} \\
& =\min \left\{\max \left\{\inf _{x^{\prime} \leq a b c} \max \left\{v_{A}(a), v_{A}(c)\right\}, \inf _{x^{\prime} \leq x z-x(y-z)}\left\{v_{A}(z)\right\}\right\}\right. \text {, } \\
& \left.\min \left\{\inf _{x^{\prime}=a b c} \max \left\{v_{B}(a), v_{B}(c)\right\}, \inf _{x^{\prime}=x z-x(y-z)} v_{B}(z)\right\}\right\} \\
& \geq \min \left\{v_{A}(x), v_{B}(x)\right\}=\left(v_{A} \cup v_{B}\right)(x) \text { from(3) and(4). }
\end{aligned}
$$

Thus $\bar{\mu}_{A} \cap \bar{\mu}_{B}$ and $v_{A} \cup v_{B}$ are cubic bi-ideal of X.

3. CONCLUSION:

In this paper cubic bi-ideals in near-subtraction near-ring has been introduced and some results are discussed.

REFERENCES

[1] J. C. Abbott, Sets, Lattices and Boolean algebras, Allyn and Bacon, Boston, 1969.
[2] Dheena P, Satheesh Kumar G. On strongly regular near subtraction semigroups,
Communication of Korean Mathematical Society. 22 (2007), 323-330.
[3] Jun YB, Kim HS. On ideals in subtraction algebra, Scientiae Mathematicae Japonicae, 65 (2007), 129-134.
[4] Jun YB, Kim CS, Kang MS. Cubic subalgebras and ideals of BCK/BCI-algebras, Fas East Journal of Mathematical Science, 44 (2010), 239-250.
[5] Jun YB, Jung ST, Kim MS Cubic Subgroups, Annals of Fuzzy Mathematics and Informatics, 2 (2011), 9-15.
[6] Jun YB, Kim CS, Yang KO. Cubic sets, Annals of Fuzzy Mathematics and Informatics, 4 (2012), 83-98.
[7] Kuroki N, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets and Systems, 5(2),(1981), 203-215.
[8] Lee KJ, Park CH. Some questions on fuzzifications of ideals in subtraction algebras, Communication Korean Math. Soc., 22,(2007), 359-363.
[9] T. Manikantan, Fuzzy bi-ideals of near-rings, Journal of Fuzzy Mathematics, 3 (2009), 659-671.
[10] Prince Williams DR. Fuzzy ideals in near-subtraction semigroups, International Scholarly and Scientific Research and Innovation, 2 (2008), 458-468.
[11] A. Rosenfeld, Fuzzy groups, Journal of Mathematical Analysis and Application, 35 (1971), 512-517.
[12] Schein BM., it Difference semigroups, Communications in algebra, 8(1992), 2153-2169.
[13] L.A. Zadeh, Fuzzy Sets, Information and Control, 8 (1965) 338-353.
[14] Zadeh LA. The concept of a linguistic variable and its application to approximate reasoning I., Information Sciences, 8 (1975), 1-24.
[15] Zelinka B. Subtraction semigroups, Mathematica Bohemica, 8 (1995), 445-447.
[16] Zekiye Ciloglu, Yilmaz Ceven. On fuzzy ideals of subtraction semigroups, SDU Journal of Science (E-Journal). 9 (2014), 193-202.

